Hydroponic Technology

"Experience has proven simple solutions are the most reliable, so Keep It Simple Silly! (KISS)" - US military dictum

A hydroponic system should be designed to fulfill the specific requirements of plants with the most reliable and efficient method(s) of nutrient delivery. The three major plant-requirements that a hydroponic system must satisfy are:

  1. Provide roots with a fresh, well balanced supply of water and nutrients.
  2. Maintain a high level of gas exchange between nutrient solution and roots.
  3. Protect against root dehydration and immediate crop failure in the event of a pump failure or power outage.

Hydroponic systems can be either active or passive. An active system includes a mechanical means for re-circulating the nutrient solution, while a passive system relies on capillary action, absorption, and/or the force of gravity to replenish roots with nutrient. Besides being generally more efficient, and therefore more productive, a nice feature of active hydroponic systems is how easily they can be implemented in an automated greenhouse. The automation system does not have to be complicated to provide outstanding results. Just as a fan may be connected to a thermostat to control temperature, a timer may be connected to a pump to deliver nutrients to the plants as necessary. If such a system is designed properly, a large nutrient reservoir could feed the crop for weeks before needing a refill. In this scenario, as long as the system is reliable, the garden will continue to thrive indefinitely without the need for continual supervision.

For a hydroponic system to be considered reliable, we must insure that the three major plant requirements are met on a consistent basis. Efficiency is just as important because it will define your operating expenses, and in some cases can prevent disrupting the growing environment. The best way to build a reliable, efficient system is through intelligent engineering. combined with practical experience. Although the feats of modern engineers are quite incredible these days, sometimes complex problems are solved with even more complex solutions. Experience has proven simple solutions are usually the most reliable. So following the old US military dictum, Keep It Simple

Silly (KISS), can certainly help the hydroponic gardener achieve consistent, reliable results.

Now that we have a better understanding how a hydroponic system works, let's look at how some of the active hydroponic techniques currently in use today employ some of the same techniques of gardens used hundreds and even thousands of years ago. One of the earliest records of people using hydroponics describes the floating gardens of the Mexican Aztecs. These gardens were crafted similar to naturally occurring ponds, complete with water lilies and hyacinths. In natural ponds, plants obtain water and nutrition directly from the pond in a bioponic environment. Waste products from fish, birds and other animals provide a rich blend of organic nutrients for the microbes in the sand and mud to thrive on. The excrements of these microbes then provide the plants with the nutrients they need to thrive. Fresh water that falls from the sky in the form of precipitation replenishes the water that is transpired by plants and lost to evaporation. In the same way, aeration and circulation in the ancient water garden was provided by falling rain or running water. When the rain stopped falling, or the stream ran dry, these gardens would become stagnated and eventually dry up. For this reason, these early garden designers built sophisticated irrigation systems consisting of troughs that could supply water where it was needed most, and sometimes over great distances.

Growing Soilless

Growing Soilless

This is an easy-to-follow, step-by-step guide to growing organic, healthy vegetable, herbs and house plants without soil. Clearly illustrated with black and white line drawings, the book covers every aspect of home hydroponic gardening.

Get My Free Ebook


Responses

Post a comment