Underground and Storage Organs ill Monocotyledons

Runners and Rhizomes. Both are creeping shoots, mid they are not always clearly distinguished. The runner is a slender axis which serves vegetative propagation. It often has elongated internodes

Fig. 12A-I. Bulbs in monocotyledons. A, B Shoot types in Tillandsia. A Pseudobulb (e.g., '/'. bulbosa). B Bulb proper (e.g., T. argentea). C-G Bulb structure in Allium. C, D A. cepa. C Bulb in longisection, showing the apical bud (b) and two lateral buds (shaded). D Flowering bulb in cross-section, inflorescence scape shaded. E A. fallax, rhizome bulb. Storage leaves developed at the top of a monopodial rhizome. F A. neapolitanum, schematic representation of bulb structure in longisection (below) and in cross-section (above). G A. ursinum. H Lilium bulbiferum, bulb with numerous narrow scales. I, I Bulbous plants with contractile roots. I Eucomis punctata, several contractile roots developed each season. J Tigridia pavonia, one contractile root of large diameter using the "tunnel effect" to pull the bulb downwards. Some figures modified. Not to scale, a Axis; b terminal bud; bu bulb; fl foliage leaf; inf inflorescence scape; lb lateral bud; nr new contractile root; or old contractile root; pi protective leaf; sc scale leaf; si storage leaf; nsl new storage leaf. (A, B Rauh 1990; C Troll 1954; D Speta 1984; E, H Irmisch 1850; F Mann 1960, G Buxbaum 1937; I, J Pütz 1992)

Botanisch Velenovsky

Fig. 13A-M. Storage organs and droppers in monocotyledons. A Gladiolus sp., corm with emerging shoot, remnants of last year's corm beneath. B Crocosmia X crocosmiflora, corms separated by runners of different length, thus being runner tubers rather than corms. C Bulbophyllum transarisanense, several generations of corms, each with one foliage leaf. D Dendrobium crumenatum, stem tubers formed by basal inter-nodes. E, F Cyperus esculentus. E Plant with subterraneous runner tubers. F runner tuber enlarged. G-I Droppers of Tulipa. G T. montana, habit. H T. gesnerana, base of seedling plant in median longisection. I Schematic longisection of bulb with developing dropper, new generation stippled. J-M Bulb runners in Lilium. J, K L. pardalinum. J Four young bulbs around parent bulb. K Same after detachment of all bulb scales. L L. vollmeri, sympodial sequence of bulbs. M L. catiadense, elongated runners with only a few scales. Some figures modified. Not to scale, ax Axillary bud; axl, ax2 axillary bud of new storage leaves; d dropper; npl new protective leaf; nsl, ns2 new storage leaves; o opening of cotyledonary sheath; opl old protective leaf; os old storage leaf; pr primary root; sc leaf scar; si storage leaf. (A, B Bell 1991; C, D Liu and Su 1978; E Rauh 1950; F, G, H Troll 1935, 1943; I Buxbaum 1958; J-M Baranova 1981)

and may grow above or below the ground, and in most cases it bears scale leaves (Fig. 11A,B). The rhizome, on the other hand, may serve vegetative propagation as well, but additionally has a storage function. The rhizome normally grows underground, but epiphytic or epilithic plants may have rhizomes that grow free on the supporting substrate. The branching of rhizomes may be monopodial or sympodial (Fig. 11), branching patterns being studied in detail by Bell and Tomlinson (1980).

Bulbs. The bulb is a very short axial body bearing 1-many leaves the bases of which store food. These leaves may be scales consisting only of the hypophyllary part or foliage leaves with a storing sheath. A bulb may be formed by only 1 of these leaf types or by a combination thereof. Additionally, protective leaves without storage function can be found. Thus, a great diversity exists in the details of bulb construction (Speta 1984; see also Fig. 12). Intermediate between a bulb and a rhizome is the rhizome bulb which is found in several Allium species (Fig. 12E).

Hypopodium

Fig. 14A-L. Corms and bulbs of Colchicaceae and Gagea. A Corm of Colchicum autumnale. B Finger corm of Gloriosa superba. C Finger corm of Ornithoglossum glaucum in two views. D-L Schematic figures to explain corm and bulb structure. D Corm of Colchicum. E Corm of Gloriosa. F, G Shoot structure of Colchicum (F) and Gloriosa (G), storage function restricted to the axis. H, I Shoot structure of Gagea, storage function taken over by scale leaves. J-L Bulb structure in Gagea. J Gagea subgen. Holobolbos. K Gagea subgen. Didy-mobolbos. L Gagea subgen. Tribolbos. 1 Subtending leaf of innovation bud; 2 subtending leaf of reserve bud; ib innovation bud; or roots of previous season; nr new roots; rb reserve bud; si storage leaf. (A Troll 1935; B-L after Buxbaum 1936, 1937, 1958)

A very vague and misleading term is pseu-dobulb, often used for orchid tubers (see below). The term pseudobulb is properly used in cases when the bases of rosulate leaves are inflated and in this way imitate a bulb (Fig. 12A).

Tubers and Corms. Both terms relate to swollen, storage axes. Tubers may develop at the end of subterranean runners (runner tubers, Fig. 13E,F) or on aerial shoots (Figs. 2E, 13C.D). In typical cases a tuber is a swollen part of an otherwise unthickened axis, and may survive for several seasons. The so-called pseudobulbs of epiphytic orchids are ordinary tubers. A typical corm is a vertical subterranean shoot of only a few swollen internodes, which bears a terminal inflorescence (Fig. 13A). After flowering, the corm shrivels and decays and is replaced by 1 or a few new corms that develop in an axillary position. Crocosmia (Fig. 13B) shows how weak the distinction between runner, tuber, and corn) is, since here the corms may be borne at the end of typical runners.

A special type of corm is found in Colchicaceae (Huxbaum 1936, 1937, 1958). The corm has only 2 liuds with a swollen internode between them (Fig. 14A,D,F), as is clearly seen in Colchicum. From the

Fig. 14A-L. Corms and bulbs of Colchicaceae and Gagea. A Corm of Colchicum autumnale. B Finger corm of Gloriosa superba. C Finger corm of Ornithoglossum glaucum in two views. D-L Schematic figures to explain corm and bulb structure. D Corm of Colchicum. E Corm of Gloriosa. F, G Shoot structure of Colchicum (F) and Gloriosa (G), storage function restricted to the axis. H, I Shoot structure of Gagea, storage function taken over by scale leaves. J-L Bulb structure in Gagea. J Gagea subgen. Holobolbos. K Gagea subgen. Didy-mobolbos. L Gagea subgen. Tribolbos. 1 Subtending leaf of innovation bud; 2 subtending leaf of reserve bud; ib innovation bud; or roots of previous season; nr new roots; rb reserve bud; si storage leaf. (A Troll 1935; B-L after Buxbaum 1936, 1937, 1958)

lower of the 2 buds, the new corm later develops; the upper bud is a reserve bud. There is a strong tendency for a the corm axis to extend laterally and eventually the 2 buds are found at the end of two fingerlike outgrowths. The finger-corm is well known in Gloriosa and related genera (see Fig. 14B,C,E,G).

Bulbs of Liliaceae. A closely related structure is found in the subterranean shoot of Gagea. Here again, the shoot bears 2 buds, but 1 scale leaf per bud forms the storage organ, the axis being

Seedling Organization Monocotyledons
  1. 15A-F. Geophilous shoots in monocotyledons. A-C Cordyline australis. A Seedling base with rhizome bud originating from seedling axis. B Base of an older seedling with well-developed rhizome (the parental seedling axis almost obliterated). C Young plant during establishment growth, with well-developed positively geotropic rhizome axially continuous with aerial stem. D Rhopalostylis sapida, young plant with positively geotropic primary axis; younger leaves breaking through a slit in the base of an older leaf at x. E, F Tricyrtis
  2. 15A-F. Geophilous shoots in monocotyledons. A-C Cordyline australis. A Seedling base with rhizome bud originating from seedling axis. B Base of an older seedling with well-developed rhizome (the parental seedling axis almost obliterated). C Young plant during establishment growth, with well-developed positively geotropic rhizome axially continuous with aerial stem. D Rhopalostylis sapida, young plant with positively geotropic primary axis; younger leaves breaking through a slit in the base of an older leaf at x. E, F Tricyrtis hirta. E Base of a young plant with geophilous lateral shoot, the hypopodium of the latter markedly elongated. F Deep buried shoot, its lowermost axillary shoots becoming runners, the upper ones growing negatively geotropic to form new aerial shoots. Not to scale, a Seedling axis; c cataphyll; gs geophilous shoot; hy hypocotyl; hp hypopodium; 6b obliterated proximal seedling axis; p prophyll; sr shoot born root. (A, B Tomlinson and Fisher 1971; C, D Tomlinson and Esler 1973; E Troll 1943; F Buxbaum 1960)
Root Grapevines
  1. 16A-J. Root tubers in monocotyledons. A Alstroemeria aurantiaca, rhizome with swollen roots. B Calathea macrosepala, roots with distal tubers. C, D Tubers of Dioscorea (Yams). C D. aculeata. D D. alata. E-J Root tubers of orchids. E Spiranthes autumnalisy axis-born tuberous roots. F-J Root tubers developed at axillary buds. F Ophrys insectifera, base of a plant with old tuber (of) and the developing innovation shoot (is) broken through its pherophyll (5/). The young tuber (nt) broken through its coleorhiza (cr). G Serapias lingua, innovation shoot in median longisection. After developing two scale leaves (si), the axis of the axillary
  2. 16A-J. Root tubers in monocotyledons. A Alstroemeria aurantiaca, rhizome with swollen roots. B Calathea macrosepala, roots with distal tubers. C, D Tubers of Dioscorea (Yams). C D. aculeata. D D. alata. E-J Root tubers of orchids. E Spiranthes autumnalisy axis-born tuberous roots. F-J Root tubers developed at axillary buds. F Ophrys insectifera, base of a plant with old tuber (of) and the developing innovation shoot (is) broken through its pherophyll (5/). The young tuber (nt) broken through its coleorhiza (cr). G Serapias lingua, innovation shoot in median longisection. After developing two scale leaves (si), the axis of the axillary bud forming a long tube pushing the root tuber (f) into the soil. H, I Herminium monorchis. H Plant with slender roots (r) and a root tuber (0-1 Runnerlike lateral elongation of the bud axis, forming with the prophyll a narrow tube. J Schematic explanation of the tube-forming process in Herminium monorchis. Some figures modified. Not to scale, ax Axillary bud; cr coleorhiza; is innovation shoot, 1 subtending leaf; nt new tuber; 0 opening of prophyll; ot old tuber; p prophyll; r root; sh inflorescence shoot; si scale leaf; t tuber. (A Dahlgren et al. 1985; B Weber 1958; C, D Ochse 1931; E-J Troll 1943, 1948)

slender (Fig. 14H-L). Thus in Gagea generally 2 small bulbs are connected to the axis. Again, the axis tends to extend laterally, as can be seen in the double bulb of Gagea subgen. Tribolbos (Fig. 14L). In Lilium the bulb has another set of special features: the bulb scales are numerous and narrow, and the axis is relatively massive. In some species the bulb produces lateral outgrowths like thick, short rhizomes (Fig. 13J-M), as was first reported by Grove (1933) and studied in more detail by Baranova (1981). In Lilium vollmeri a sym-podial sequence of bulbs may be formed, with each bulb surviving for a long period of time after flowering (Fig. 13L). This structure comes close to a sympodial rhizome. Finally, in Tulipa the bulb can develop the well-known dropper (Fig. 13G-I). This curious organ again is formed by an extensive lateral extension of the axis. In the course of this process an axillary bud is pushed deeper into the ground by a tubular structure. One half of the tube is formed by axis material, the other half comes from the base of the subtending leaf (Fig. 13H,I). The bud itself produces new storage scale leaves, thus forming a new bulb at the distal end of the dropper.

Geophilous Shoots. In the course of establishment growth, some monocotyledons develop shoots which grow directly downward into the soil. This phenomenon was described in detail by Tomlinson and Fisher (1971) and Tomlinson and Esler (1973) for Cordyline australis, C. banksii, and the palm Rhopalostylis sapida. In Rho-palostylis, as well as in some other palms, the primary axis grows directly downward until the apical bud is buried at a depth of about 15 cm (Fig. 15D). Thereafter the direction of growth is abruptly reversed, becoming erect. In Cordyline a laterally initiated axillary rhizome grows downward, thus forming an axis that is in direct continuity with the upright aerial shoot (Fig. 15A-C). The vertical, scale-bearing rhizome grows to a depth of 30-40cm. The development of such geophilous axes is an effective means to overcome the limitations of trunk stability in large woody monocotyledons. Troll (1943) described a similar situation in the herbaceous genus Tricyrtis (Fig. 15E). Here an axillary branch grows downward from the seedling base with a remarkably elongated hypopodium.

Root Tubers. Tubers formed by roots may be developed in the proximal root region and then are mostly spindlelike as in Alstroemeria (Fig. 16A), Asparagus, or Chlorophytum. In other cases the swelling appears distally and is more or less ovoid or globose, as in several Marantaceae (Fig. 16B).

Of special interest are the root tubers of soil-rooting orchids (Fig. 16E-J). Spiranthes is the only known genus of the family that produces tuberous roots initiated on the main axis (Fig. 16E). In all other cases, root tubers develop from axillary buds. This may happen in two different ways. The first is exemplified by the genera Ophrys and Serapias (Fig. 16F,G). The axillary bud produces 2 scale leaves and an endogenous root, which soon breaks through its coleorhiza. Thereafter the bud axis begins to form a tube so that the apical meristem sinks to the base of the tube. The bud, together with the distal young root tuber, is pushed into the substrate by further elongation growth of the tube.

Herminium monorchis (Fig. 16H-J) is an example of the second way of forming a root tuber. Here the bud axis undergoes a strong lateral elongation, carrying the bud meristem and the root already covered by its coleorhiza away from the parental axis. The base of the prophyll participates in this process and forms a tube with the bud axis (Fig. 16I,J). The root breaks through its coleorhiza and develops a tuber only after the runner has reached its final length.

Tubers of the Dioscoreaceae. The famous Testudinaria elephantipes bears a large shoot tuber at ground level. Underground organs in Dioscorea include rhizomes and tubers of greatest diversity (Fig. 16C,D), the morphological interpretation of which is often controversial (Goebel 1905, Sharma 1974, von Teichman und Logischen et al. 1977). Although there is good evidence for the root nature of yam tubers (see Sharma 1974), a comprehensive study of the underground organs in this heterogeneous genus is urgently needed. Similarly, the axillary bulbils of aerial shoots of species of Dioscorea need further morphological study (Burkill 1960).

Selected Bibliography

Arber, A. 1918. The phyllode theory of the monocotyledonous leaf with special reference to anatomical evidence. Ann. Bot. 32: 465-501.

Arber, A. 1920a. Leaf-base phyllodes among Liliaceae. Bot.

Gaz. 69: 337-340. Arber, A. 1920b. On the leaf structure of certain Liliaceae, considered in relation to the phyllode theory. Ann. Bot. 34: 447-465.

Arber, A. 1921a. Leaves of the Helobiae. Bot. Gaz. 72: 31-38. Arber, A. 1921b. The leaf structure of the Iridaceae, considered in relation to the phyllode theory. Ann. Bot. 35: 301-336.

Arber, A. 1922a. Leaves of the Farinosae. Bot. Gaz. 74: 80-94.

Arber, A. 1922b. On the nature of the "blade" in certain mono-cotyledonous leaves. Ann. Bot. 36: 329-351.

Arber, A. 1922c. On the leaf tips of certain monocotyledons. J. Linn. Soc. Bot. 45: 467-476.

Arber, A. 1923a. Leaves of the Gramineae. Bot. Gaz. 76: 374388.

Arber, A. 1923b. On the "squamulae intravaginales" of the Helobiae. Ann. Bot. 37: 31-41.

Arber, A. 1924a. Danae, Ruscus and Semele\ a morphological study. Ann. Bot. 38: 229-260.

Arber, A. 1924b. Myrsiphyllum and Asparagus: a morphological study. Ann. Bot. 38: 635-659.

Arber, A. 1925a. Monocotyledons. A morphological study. Cambridge: Cambridge University Press.

Arber, A. 1925b. On the "squamulae intravaginales" of the Alismataceae and Butomaceae. Ann. Bot. 39:169-173.

Baranova, M.V. 1981. On the relationship of bulb structure with environment. Tr. Mosk. Ova. Ispyt. Prir. 56:76-90. (in Russian)

Barykina, R.P., Gulenkova, M.A. 1985. Ontomorphogenesis, anatomy and the nature of leaf-like organs in Asparagus sprengen (Asparagaceae). Bot ¿h. 70:322-331. (in Russian)

Bechtel, H., Cribb, P., Launert, E. 1993. Orchideen-Atlas. Lexikon der Kultur-Orchideen. 3. Aufl. Stuttgart: E. Ulmer.

Bell, A.D. 1991. Plant form. An illustrated guide to flowering plant morphology. Oxford: University Press.

Bell, A.D., Tomlinson, P.B. 1980. Adaptive architecture in rhi-zomatous plants. J. Linn. Soc. Bot. 80: 125-160.

Bharathan, G. 1996. Does the monocot mode of leaf development characterize all monocots? Aliso 14: 271-279.

Bioedel, C.A., Hirsch, A.M. 1979. Developmental studies of the leaves of Sagittaria latifolia and their relationship to the leaf base theory of monocotyledonous leaf morphology. Can. J. Bot. 57: 420-434.

Bown, D. 1988. Aroids. Plants of the Arum family. London: Century Press.

Boyce, P.C., Nguyen Van Dzu 1995. Pothos grandis (Araceae: Pothoideae) described and validated and architectural notes on Pothos subgen. Pothos. Kew Bull. 50: 753-759.

Boyce, P.C., Poulsen, A.D. 1994. Notes on Pothos insignis (Araceae: Pothoideae). Kew Bull. 49: 523-529.

Brooks, A.K. 1993. Pandanaceae. In: Harden, G.J. (ed.) Flora of New South Wales, Vol. 4. Kensington: N.S.W. Univ. Press pp. 659-660.

Burkiii, I.H. 1960. The organography and evolution of Diocoreaceae, the family of yams. J. Linn. Soc. Bot. 56:319412.

Buxbaum, F. 1936. Die Entwicklungslinien der Lilioideae. I. Die Wurmbaeoideae. Bot Arch. 38: 213-293.

Buxbaum, F. 1937. Die Entwicklungslinien der Lilioideae. II. Die systematische Stellung der Gattung Gagea. III. Die Lilioideae Engl. Bot. Arch. 38: 305-398.

Buxbaum, F. 1958. Der morphologische Typus und die systematische Stellung der Gattung Calochortus. Beitr. Biol. Pflanz. 34: 405-452.

Buxbaum, F. 1960. Beiträge zur Morphologie der Gattung Tricyrtis. Beitr. Biol. Pflanz. 35: 55-75.

Cabrera, A.L. (ed.) 1968. Flora delà Provincia de Buenos Aires, Vol. 1. Buenos Aires: INTA.

Candolle, A.-P. de 1828. Organographie végétale. Paris: Déterville.

Correll, D.C., Correll, H.B. 1982. Flora of the Bahama Archipelago. Vaduz: J. Cramer.

Dahlgren, R.M.T. et al. 1985. See general references.

Oengler, N.G., Dengler, R.F., Kaplan, D.R. 1982. The mechanism of plication inception in palm leaves: histogenetic ob servations on the pinnate leaf of Chrysalidocarpus lutescens. Can. J. Bot. 60: 2976-2998.

Dickson, A. 1885. On the occurrence of foliage leaves in Ruscus (Semele) androgynus; with some structural and morphological considerations. Trans. Proc. Bot. Soc. Edinb. 16: 130-149.

Dransfield, J. 1978. Growth forms of rain forest palms. In: Tomlinson, P.B., Zimmermann, M.H. (eds.) Tropical trees as living systems. Cambridge: Cambridge University Press.

Fisher, J.B. 1974. Axillary and dichotomous branching in the palm Chamaedorea. Am. J. Bot. 61: 1046-1056.

Fisher, J.B. 1976. Development of dichotomous branching and axillary buds in Strelitzia (Monocotyledoneae). Can. J. Bot. 54: 578-592.

Fisher, J.B. 1978. Leaf-opposed buds in Musa: their development and a comparison with allied monocotyledons. Ann. Bot. 65: 784-791.

Fisher, J.B., Dransfield, J. 1979. Development of axillary and leaf-opposed buds in rattan palms. Ann. Bot. (Lond.) 44: 57-66.

Gaisberg, E. von 1922. Zur Deutung der Monokotylenblätter als Phyllodien. Flora 115:177-190.

Gibson, R.J.H. 1905. Axillary scales of aquatic monocotyledons. J. Linn. Soc. Bot. 37: 228-237.

Gilliland, H.B. 1971. Grasses of Malaya. In: Burkill, H.M. (ed.) A revised flora of Malaya, Vol. 3. Singapore: Government Printing Office.

Goebel, K. 1905. Morphologische und biologische Bemerkungen. 16. Die Knollen der Dioscoreen und die Wurzelträger der Selaginellen, Organe, welche zwischen Wurzeln und Sprossen stehen. Flora 95 (Ergänzungsband): 167-212.

Goebel, K. 1933. Organographie der Pflanzen. 3. Teil: Samenpflanzen. 3. Aufl. Jena: G. Fischer.

Grove, A. 1933. Lilium michiganense. Gard. Chron. 1933, 2: 120-121.

Hegelmaier, F. 1868. Die Lemnaceen. Leipzig: W. Engelmann.

Hirsch, A.M. 1977. A developmental study of the phylloclades of Ruscus aculeatus L.J. Linn. Soc. Bot. 74: 355-365.

Holttum, R.E. 1955. Growth habits of monocotyledons -variations on a theme. Phytomorphology 5: 399-411.

Hotta, M. 1971. Study of the family Araceae. General remarks. Jpn. J. Bot. 40: 269-310.

Hsu, C.-C. 1978. Gramineae (Poaceae). In: Flora of Taiwan, Vol. 5. Taipei: Epoch Publishing Co. pp. 373-783.

Irmisch, T. 1850. Zur Morphologie der monokotylischen Knollen- und Zwiebelgewächse. Berlin: G. Reimer.

Irmisch, T. 1853. Beiträge zur Biologie und Morphologie der Orchideen. Leipzig: A. Abel.

Irmisch, T. 1858a. Über einige Arten aus der natürlichen Pflanzenfamilie der Potameen. Abh. Naturwiss. Ver. Sachsen Thüringen (Halle) 2:1-56.

Irmisch, 1858b. Über das Vorkommen von schuppen- oder haarförmigen Gebilden innerhalb der Blattscheiden bei monokotylischen Gewächsen. Bot. Zeitung (Berlin) 16:177179.

Irmisch, T. 1876. Ueber einige Pflanzen, bei denen in der Achsel bestimmter Blätter eine ungewöhnlich grosse Anzahl von Sprossanlagen sich bilden. Abh. Naturwiss. Ver. Bremen 5:1-27.

Kahn, F., Granville, J.-J. de 1992. Palms in forest ecosystems of Amazonia. Berlin Heidelberg New York: Springer.

Kaplan, D.R. 1972. Comparative developmental analysis of the heteroblastic leaf series of axillary shoots of Acorus calamus L. (Araceae). Cellule 69: 251-290.

Kaplan, D.R. 1973. The problem of leaf morphology and evolution in the monocotyledons. Q. Rev. Biol. 48:437-457.

Kaplan, D.R. 1975. Comparative developmental evaluation of the morphology of unifacial leaves in the monocotyledons. Bot. Jahrb. Syst. 95:1-105.

Kaplan, D.R., Dengler, N.G., Dengler, R.F. 1982a. The mechanism of plication inception in palm leaves: problem and developmental morphology. Can. J. Bot. 60: 2939-2975.

Kaplan, D.R., Dengler, N.G., Dengler, R.F. 1982b. The mechanism of plication inception in palm leaves: histogenetic observations on the palmate leaf of Rhapis exceha. Can J. Bot. 60: 2999-3016.

Kaussmann, B. 1955. Histogenetische Untersuchungen zum Flachsproßproblem. Bot. Stud. (Jena) 3:1-136.

Knoll, F. 1948. Bau, Entwicklung und morphologische Bedeutung unifazialer Vorläuferspitzen an Monokoty-lenblättern. Oesterr. Bot. Z. 95: 163-193.

Koyama, T. 1978. Smilacaceae. In: Flora of Taiwan, Vol. 5: 110-137. Taipei: Epoch Publishing Co.

Liu, T.-S., Huang, T.-C. 1978. Dioscoreaceae. In: Flora of Taiwan, Vol. 5. Taipei: Epoch Publishing Co., pp. 99-109.

Liu, T.-S., Su, H.-J. 1978. Orchidaceae. In: Flora of Taiwan, Vol. 5. Taipei: Epoch Publishing Co., pp. 859-1137.

Mann, L.K. 1960. Bulb organisation in Allium: some species of section Molium. Am. J. Bot. 47: 765-771.

Martius, C.F.P. von 1823. Historia naturalis palmarum. Vol. 1: Palmas generatim tractat Leipzig: T.O. Weigel.

Mayo, S.J., Bogner, J., Boyce, P.C. 1997. The genera of Araceae. The Trustees. Royal Botanic Gardens, Kew.

McClure, F.A. 1966. The bamboos. A fresh perspective. Cambridge (Mass.): Harvard Univ. Press.

Ochse, J.J. 1931. Vegetables of the Dutch East Indies. Buitenzorg: Archipel Drukkerij.

Peters, T. 1927. Über die Bedeutung der inversen Leitbündel für die Phyllodien-Theorie. Planta 3:90-99.

Pütz, N. 1992. Das Verhältnis von Bewegung und Wurzelkraft bei Monokotylen. Beitr. Biol. Pflanz. 67:173-191.

Rauh, W. 1950. Morphologie der Nutzpflanzen. 2. Aufl. Reprint 1994. Heidelberg: Quelle 8t Meyer.

Rauh, W. 1990. Bromelien. 3. Aufl. Stuttgart: Ulmer.

Rodionenko, G.J. 1961. Rod iris - Iris L. Moskau: Isdatelstwo AN SSSR. (in Russian)

Rohweder, 0., Endress, P.K. 1983. Samenpflanzen. Morphologie und Systematik der Angiospermen und Gymnospermen. Stuttgart: Thieme.

Schüttler, J. 1953. Die Blütenartikulation und die Phyllo-kladien der Liliaceen organphylogenetisch betrachtet. Feddes Repert. 55: 154-258.

Schüttler J. 1960. Die Asparageenphyllokladien erweisen sich auch ontogenetisch als Blätter. Bot Jahrb. Syst. 79: 428446.

Schoute, J.C. 1909. Ober die Verästelung bei monokotylen Bäumen. II. Die Verästelung von Hyphaene. Ree. Trav. Bot. Nierl. 6: 211-232.

Sharma, O.P. 1974. Anatomy, origin and development of tuber of Dioscorea glabra. Phytomorphology 24: 297-305.

Speta, F. 1984. Zwiebeln - versteckte Vielfalt in einfacher Form. Linzer BioL Beitr. 16: 3-44.

Stevenson, D.W. 1973. PhyUode theory in relation to leaf ontogeny in Sansevieria trifasciata. Am. J. Bot. 60: 387395.

Strong, D.J., Ray, T.S. 1975. Host tree location bahavior of a tropical vine (Monstera gigantea) by skototropism. Science 190: 804-806.

Teichman und Logischen, I. von, Robbertse, P.J., Schijff, H.P. van der 1977. The subterranean intermediary organs of Dioscorea cotinifolia Kunth. 1. The germination, development, morphology and vegetative reproduction of the tuberous swollen and cyündrical intermediary organs. J. South Aft. Bot. 43: 41-56.

Telford, I.R.H. 1987. Proiphys. In: Flora of Australia, Vol. 45. Canberra: Austral. Governm. Publ. Service, pp. 376-379.

Tillich, H.-J. 1985. Keimlingsbau und verwandtschaftliche Beziehungen der Araceae. Gleditschia 13: 63-73.

Tillich, H.-J. 1992. Bauprinzipien und Evolutionslinien bei monocotylen Keimpflanzen. Bot Jahrb. Syst. 114: 91-132.

Tillich, H.-J. 1995a. Seedüngs and systematics in monocotyledons. In: Rudall, P.J., Cribb, P., Cutler, D.F., Humphries, C.J. (eds.) Monocotyledons: systematics and evolution. Royal Bot. Gardens Kew, pp. 303-352.

Tillich, H.-J. 1995b. Früchte, Samen und Keimpflanzen bei den Cyanastraceae Engler 1900 und einigen vermuteten Verwandten. Feddes Repert. 106: 483-493.

Tomünson, P.B. 1960. Essays on the morphology of palms. I. Germination and the seedling. Prindpes 4: 56-61.

Tomlinson, P.B. 1961. Palmae. In: Metcalfe, C.R. (ed.) Anatomy of monocotyledons, Vol. 2. Oxford: Clarendon Press.

Tomünson, P.B. 1970a. Dichotomous branching in Flagellaria indica (monocotyledons). J. Linn. Soc. Bot. 63, Suppl. 1:114.

Tomlinson, P.B. 1970b. Monocotyledons - towards an understanding of their morphology and anatomy. Adv. Bot. Res. 3: 207-292.

Tomlinson, P.B. 1971. The shoot apex and its dichotomous branching in the Nypa palm. Ann. Bot (Lond) 35: 865879.

Tomlinson, P.B. 1982. Helobiae (Alismatidae). In: Metcalfe, C.R. (ed.) Anatomy of monocotyledons, Vol. VII. Oxford: Clarendon Press.

Tomlinson, P.B., Esler, A.E. 1973. Establishment growth in woody monocotyledons native to New Zealand. N. Z. J. Bot. 11: 627-644

Tomünson P.B., Fisher, J.B. 1971. Morphological studies in Cordyline (Agavaceae). I. Introduction and general morphology. J. Arnold Arbor. 52: 459-478.

Tomlinson, P.B., Posluszny, U. 1977. Features of dichotomizing apices in Flagellaria indica (monocotyledons). Am. J. Bot. 64: 1054-1065.

Troll, W. 1935/1943. Vergleichende Morphologie der höheren Pflanzen. 1. Band. Vegetationsorgane. 1. Teil (1935), 3. Teil (1943). Berlin: Gebr. Borntraeger.

Troll, W. 1948. Allgemeine Botanik. Stuttgart- F. Encke.

Troll, W. 1954. Praktische Einführung in die Pflanzenmorphologie. 1. Teil. Jena: G. Fischer.

Troll, W. 1955. Über den morphologischen Wert der sogenannten Vorläuferspitze von Monokotylenblättern. Beitr. Biol. Pflanz. 31: 525-558.

Uhl, N.W., Dransfield, J. 1987. Genera palmarum. Lawrence (Kansas): Allen Press.

Vaides, B., Talavera, S., Fernandes-Galiano, E. (eds.) 1987. Flora Vascular de Andalucia Occidental, Vol. 3. Barcelona: Ketres Editora.

Velenovsky, J. 1903. Zur Deutung der Phyllokladien der Asparageen. Beih. Bot Centralbl. 15: 157-268.

Wagner, W.L., Herbst, D.R., Sohmer, S.H. 1990. Manual of the flowering plants of Hawai'i. Honolulu: Univ. of Hawaii Press.

Weber, H. 1950. Morphologische und anatomische Studien über Eichhornia crassipes (Mart.) Solms. Akad. Wiss. Lit Mainz, Abh. Math.-Naturwiss. Kl. 1950, 6:135-161.

Weber, H. 1958. Die Wurzelverdickungen von Calathea macrosepala Schum. und einigen anderen monokotylen Pflanzen. Beitr. Biol. Pflanz. 34: 177-193.

Weberling, F. 1958. Die Bedeutung blattmorphologischer Untersuchungen für die Systematik. Bot Jahrb. Syst. 77: 458-468.

Weberling, F. 1975. Ober die Beziehungen zwischen Scheidenlappen und Stipeln. Bot. Jahrb. Syst. 96:471-491.

Weberling, F. 1989. Morphology of flowers and inflorescences. Cambridge: Cambridge University Press.

Yamashita, T. 1970. Eigenartige Wurzelanlage des Embryos bei Lilaea subulata Humb. & Bonpl. und Triglochiti maritimum L. J. Fac. Sei. Univ. Tokyo, Sect. III. 10: 181205.

Yamashita, T. 1972. Eigenartige Wurzelanlage des Embryos bei Ruppia maritima L. Beitr. Biol. Pflanz. 48: 157170.

Yamashita, T. 1976. Über die Embryo- und Wurzelentwicklung bei Aponogeton madagascariensis (Mirbel) van Brüggen. J. Fac. Sei. Univ. Tokyo, Sect. III, 12: 3764.

Growing Soilless

Growing Soilless

This is an easy-to-follow, step-by-step guide to growing organic, healthy vegetable, herbs and house plants without soil. Clearly illustrated with black and white line drawings, the book covers every aspect of home hydroponic gardening.

Get My Free Ebook


Responses

  • susanna
    Which one of the following bears the contractile root or pull root allium?
    7 years ago
  • Kaelyn
    How to grow alstroemeria tuber?
    7 years ago
  • Dominik
    How do gladioli reproduce?
    7 years ago
  • angela
    What are the Morphology of a storage organs of crop plants.?
    3 years ago
  • Kimberly
    What is food storage in monocot plant?
    7 months ago
  • VENERA
    What is a special underground storage organ produced by monocotyledonous plants?
    1 day ago

Post a comment